

Published on Web 09/24/2009

Tandem Asymmetric Aza-Darzens/Ring-Opening Reactions: Dual Functionality from the Silane Lewis Acid

S. Corey Valdez and James L. Leighton*

Department of Chemistry, Columbia University, New York, New York 10027 Received August 5, 2009; E-mail: leighton@chem.columbia.edu

The asymmetric synthesis of aziridines has received a significant amount of attention,¹ primarily because of their utility in ringopening reactions.² These two processes are typically staged sequentially, and we wondered whether they might instead be orchestrated in an efficient and step-economical tandem reaction sequence. The asymmetric aza-Darzens reaction^{3,4} seemed especially relevant in this regard because it seemed plausible that the Lewis acid (LA) that serves to activate the imine might further serve to activate the aziridine toward ring-opening nucleophilic attack (Scheme 1A). Our chiral silane Lewis acid-acylhydrazone platform has been shown to be effective for a range of nucleophilic addition reactions,⁵ and we speculated that it might also be effective in promoting aza-Darzens reactions and subsequent ring-opening reactions (Scheme 1B). Exploratory reactions were carried out with silane (S,S)-1 and hydrazone 2a. Whereas ethyl diazoacetate was unreactive toward the silane-hydrazone complex, treatment with the stabilized ylide derived from sulfonium salt 3^6 and Hunig's base led not to the aziridine but rather to ring-opened product 4a (Scheme 1C). Upon optimization, this reaction was quite effective, giving 4a in 84% yield as a single regioisomer and diastereomer $(\geq 20:1 \text{ rr and dr})$ in 97% ee. The aziridine is thus clearly formed in the reaction, but it is still complexed to and activated by the silane Lewis acid and undergoes a highly regio- and diastereoselective ring-opening reaction in the presence of the chloride ion that is liberated in the silane-hydrazone complexation process. The reaction may thus be considered as a tandem aza-Darzens/ringopening reaction in which the silane Lewis acid performs two distinct functions as well as a simple synthetic equivalent of and alternative to alkene aminohalogenation reactions.⁷

Scheme 1

The synthesis of sulfonium salt **3** requires the use of stoichiometric amounts of $AgBF_4$ and takes several days. We therefore investigated whether it might be possible to adapt the procedure of Aggarwal whereby the ylide is generated in situ by the rhodium-catalyzed reaction of a sulfide with a diazo ester.⁸ Indeed, the combination of Ph_2S (2 equiv) and ethyl diazoacetate (2 equiv) in the presence of 1 mol % [Rh(OAc)₂]₂ generates the ylide derived from **3** in situ, and this procedure is fully compatible with the silane—hydrazone complex (Scheme 2). After optimization, the product **4a** was obtained in 88% yield and 95% ee. In principle, the sulfide may be used in substoichiometric amounts, but in this case, that procedure led to extensive dimerization of the ethyl diazoacetate. This is nevertheless a simple and reliable procedure that employs inexpensive and readily available starting materials, and we have found it to be preferable to the procedure described in Scheme 1C.

Scheme 2

With optimal conditions identified, an examination of the scope of the reaction was carried out (Table 1). Substituted benzaldehydederived hydrazones (2a-i) were employed, and in every case the reactions proceeded smoothly, delivering the products 4a-i in good yield. In some cases, a significant amount of a minor regioisomeric product (α -chloro- β -hydrazido ester) was formed, while in most cases the major product was formed with excellent levels of enantioselectivity.

Table 1.	One-Pot A	Aza-Darzen	s/Ring-O	pening l	Reactions	with ((<i>S</i> , <i>S</i>)	-1
----------	-----------	------------	----------	----------	-----------	--------	-------------------------	----

	$+$ N_2 OEt -	1.3 equiv (<i>S</i> , <i>S</i>)-1 1 mol% Rh ₂ (OAc) ₄ , Ph ₂ S 4:1 PhCH ₃ :CH ₂ Cl ₂ , 0 °C	► Ar	
entry	Ar	yield (%)	rr	ee (%)
1	Ph (a)	88	≥20:1	95
2	p-Br-C ₆ H ₄ (b)	85	17:1	91
3	$p-F-C_{6}H_{4}(c)$	81	11:1	92
4	$p-NO_2-C_6H_4$ (d	l) 82	6:1	94
5	$p-CF_{3}-C_{6}H_{4}(\mathbf{e})$	83	9:1	97
6	$p-CH_3-C_6H_4$ (f)) 76	≥20:1	94
7	o-Br-C ₆ H ₄ (g)	81	6:1	86
8	o-CH ₃ -C ₆ H ₄ (h) 84	10:1	93
9	1-naphthyl (i)	82	7:1	89

β-Chloro-α-hydrazido esters **4** are arguably primarily of interest as an entry into unusual α-amino acid derivatives by way of nucleophilic substitution reactions. For example, simply heating **4a** in DMSO at 55 °C led to the isolation of **5**, a β-hydroxy-αhydrazido ester derivative, in 79% yield with complete retention of optical purity (Scheme 3). Similarly, treatment of **4a** with phenyl isothiocyanate gave 2-(phenylimino)thiazolidine **6** in 78% yield. While many other versions of processes such as these with heteroatom nucleophiles may be imagined, the use of carbon nucleophiles was of interest as well. Toward that end, **4a** was treated with acrolein followed by 10 mol % thiazolium salt **7** and Hunig's base. This one-pot procedure produced piperidone derivative **8** in 73% yield.⁹ Compounds **5**, **6**, and **8**, representing a diverse set of densely functionalized heterocycles, are thus readily accessible in just two straightforward steps.

Scheme 3

To more fully exploit the ability of the silane Lewis acid to promote both the aza-Darzens reaction and subsequent ring-opening reactions, the addition of electron-rich arenes was investigated in order to develop a single-step synthesis of diarylalanine derivatives.^{10,11} When the reaction shown in Scheme 2 was repeated and indole was then added (and the resulting mixture stirred for 3 days), 9a was isolated in 22% yield and 92% ee (Scheme 4). Although inefficient, this reaction and its diastereochemical outcome clearly implied that the conversion of aziridine intermediate A into initial product B is reversible and that the silane is competent to activate the aziridine toward attack of the indole. On the basis of the hypothesis that the conversion of **B** to **A** is rate-limiting, exogenous Lewis acids were screened in the hope of accelerating this process. Eventually, it was found that ZnCl₂ was particularly effective, leading to 9a in 80% yield and 94% ee. With an effective synthesis of 9a in hand, its two-step conversion into protected amino acid 10 was demonstrated.12

Scheme 4

The results of a brief survey of the scope of this process are compiled in Table 2. Substitution on the indole was tolerated (entries 2 and 3), as was the use of dimethylaniline nucleophiles (entries 4 and 5) and substitution on Ar^1 (entry 6). While the efficiency of these reactions ranged from moderate to good (50–80% yields), in every case the product was obtained as a single regioisomer and diastereomer with excellent enantioselectivity.

We have developed an efficient and highly enantioselective aza-Darzens-like reaction wherein the chiral silane Lewis acid further activates the initially formed aziridine toward ring-opening reactions with either chloride or arene nucleophiles to deliver complex amino acid derivatives in a simple one-pot process. Current efforts are focused on expanding the scope of the process. Table 2. One-Pot Aza-Darzens/Ring-Opening Reactions with Arenes

Acknowledgment. This work was supported by a grant (CHE-0809659) from the National Science Foundation. S.C.V. is a National Science Foundation Graduate Research Fellow. We thank Prof. G. F. R. Parkin and Mr. Kevin Yurkerwich for X-ray structure analyses (see the Supporting Information), and the National Science Foundation (CHE-06-19638) is thanked for the acquisition of an X-ray diffractometer.

Supporting Information Available: Experimental procedures, characterization data, stereochemical proofs, and CIF files for **4a**, **5**, and **9b**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Jacobsen, E. N. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 2, p 607. (b) Muller, P.; Fruit, C. *Chem. Rev.* **2003**, *103*, 2905.
- (a) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599. (b) McCoull,
 (a) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599. (b) McCoull,
 (b) McSull, W.; Davis, F. A. Synthesis 2000, 1347. (c) Kolb, H. C.; Finn, M. G.;
 Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004. (d) Sweeney,
 J. B. Chem. Soc. Rev. 2002, 31, 247. (e) Hu, X. E. Tetrahedron 2004, 60,
 (701. (f) Pineschi, M. Eur. J. Org. Chem. 2006, 4979.
- (3) For the chiral Lewis acid-catalyzed addition of diazo esters to imines, see:
 (a) Antilla, J. C.; Wulff, W. D. J. Am. Chem. Soc. 1999, 121, 5099. (b) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39, 4518. (c) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7185. (d) Zhang, Y.; Desai, A.; Lu, Z.; Hu, G.; Ding, Z.; Wulff, W. D. Chem.-Eur. J. 2008, 14, 3785.
- (4) For the chiral Brønsted acid-catalyzed addition of diazo amides to imines, see: Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 14380.
- (5) (a) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686. (b) Shirakawa, S.; Berger, R.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 2858. (c) Shirakawa, S.; Lombardi, P. J.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 9974. (d) Notte, G. T.; Leighton, J. L. J. Am. Chem. Soc. 2008, 130, 6676.
- (6) (a) Nozaki, H.; Tunemoto, D.; Matubara, S.; Konda, K. *Tetrahedron* 1967, 23, 545. (b) Müller, P.; Fernandez, D.; Nury, P.; Rossier, J.-C. *Helv. Chim. Acta* 1999, 82, 935.
- (7) For asymmetric (chiral-auxiliary-controlled) alkene aminohalogenation reactions, see: (a) Xu, X.; Kotti, S. R. S. S.; Liu, J.; Cannon, J. F.; Headley, A. D.; Li, G. Org. Lett. 2004, 6, 4881. (b) Wang, Y.-N.; Kattuboina, A.; Ai, T.; Banerjee, D.; Li, G. Tetrahedron Lett. 2007, 48, 7894.
- (8) (a) Aggarwal, V. K.; Thompson, A.; Jones, R. V. H.; Standen, M. C. H. J. Org. Chem. 1996, 61, 8368. (b) Aggarwal, V. K.; Ferrara, M.; O'Brien, C. J.; Thompson, A.; Jones, R. V. H.; Fieldhouse, R. J. Chem. Soc., Perkin Trans. 1 2001, 1635.
- (9) This reaction appears to be the first example of N-heterocyclic carbene (NHC)-catalyzed alkylation with a secondary electrophile (and thus the first with stereochemical consequences). For a report on an NHC-catalyzed alkylation reaction with primary alkyl tosylates, see: He, J.; Zheng, J.; Liu, J.; She, X.; Pan, X. Org. Lett. 2006, 8, 4637.
- (10) Lin, J.; Liao, S.; Hruby, V. J. J. Pept. Res. 2005, 65, 105.
- (11) For examples of the Lewis acid-promoted opening of aziridines with electron-rich arenes, see: (a) Sato, K.; Kozikowski, A. P. *Tetrahedron Lett.* **1989**, *30*, 4073. (b) Dubois, L.; Mehta, A.; Tourette, E.; Dodd, R. H. J. Org. Chem. **1994**, *59*, 434. (c) Bennani, Y. L.; Zhu, G.-D.; Freeman, J. C. Synlett **1998**, 754. (d) Nishikawa, T.; Kajii, S.; Wada, K.; Ishikawa, M.; Isobe, M. Synthesis **2002**, 1658. (e) Manaka, T.; Nagayama, S.-I.; Desadee, W.; Yajima, N.; Kumamoto, T.; Watanabe, T.; Ishikawa, T.; Kawahata, M.; Yamaguchi, K. *Helv. Chim. Acta* **2007**, *90*, 128.
- (12) Ding, H.; Friestad, G. K. Org. Lett. 2004, 6, 637.

JA9066354